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Abstract

This paper considers the steady state conduction of heat from a wall to a fluid moving at a uniform velocity. The wall is heated by a
step change in temperature. Although this appears to be a classical heat conduction problem, its application to various convective heat
transfer problems is new. The mathematical procedure leads to the computation of the temperature field and the heat transfer coefficient.
In the presence of a step change in the wall temperature, it is shown that the Stanton number is a function of the Peclet number alone.
The acquired analytical results show that, near the thermal entrance location, heat conduction dominates and the local heat flux becomes
independent of velocity. This phenomenon applies to classical convection problems in various-shaped ducts.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Conduction of heat in the presence of a moving wall is
widely available in the literature [1,2]. The emphasis of this
paper is to determine the effect of axial conduction of heat,
in the flow direction parallel to a wall. Also, the fluid can be
viewed as a stationary semi-infinite domain with a moving
wall temperature at ŷ ¼ 0. A simple model, as shown in
Fig. 1, is selected to show this effect and it describes a fluid
flowing at a uniform velocity over an infinite plate whose
temperature is Ti when x̂ < 0 and suddenly changes to Tw

when x̂ > 0. This mathematical model provides useful
information as to the behavior of the heat transfer near
the thermal entrance location within the flow in ducts.

Knowledge of heat flux near the location where heating
begins has application to convective heat transfer in ducts
when the axial conduction effect is significant. This phe-
nomenon has been studied in the past for free flow through
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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ducts using various numerical schemes [3–7] and a complete
extended Graetz solution is in [8]. The contribution of axial
thermal conduction in porous passages, with walls at uni-
form temperature, are numerically determined and reported
in [9] for parallel plate channel and in [10] for circular ducts.
Also, it has applications in micro-devices [11] and cooling of
electronic systems, especially when the ducts are filled with
fluid saturated porous materials [12,13]. Accordingly, the
flow in channels filled with fluid saturated hyperporous
metallic foam [14] is of interest for cooling of electronic
devices. Experimental data in [15] show that the Peclet num-
ber in channels filled with fluid saturated porous aluminum
foam can become relatively small and, under this condition,
the contribution of axial conduction becomes significant.

Lahjomri and Oubarra present a procedure in [8] for
determination of heat transfer in the presence of axial con-
duction to free flow through parallel plate channels and cir-
cular ducts using a modified Graetz solution method. Also,
a study of the effect of axial thermal conduction to the heat
transfer phenomena in these ducts, filled with fluid satu-
rated porous materials, is in Minkowycz and Haji-Sheikh
[16].
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Nomenclature

cp specific heat, J/kg K
E energy, W
h heat transfer coefficient, W/m2 K
k thermal conductivity, W/m K
Lc characteristic length
Nux hx̂=k
Pe Peclet number, ULc/a
Pex Peclet number, Ux̂=a
qw wall heat flux, W/m2

Q1,2 wall heat flux between x̂1 and x̂2, W/m
Q* dimensionless total wall heat flux
St Stanton number, h/(qcpU)
Ti wall temperature when x̂ < 0, K
Tw wall temperature when x̂ > 0, K
U velocity, m/s

W fluid layer thickness, m
x x̂=Lc

x̂ axial coordinate, m
y ŷ=Lc

ŷ; ẑ coordinates, m

Greek symbols

a thermal diffusivity, m2/s
b dummy variable
f Ux̂=ð2aÞ
k dummy variable
h dimensionless temperature
q density, kg/m3

W special function
x Pe/2
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The case of slug flow appears in fluid flow through por-
ous passages when the permeability is small. The studies
reported here show that, for other cases, this slug flow
assumption provides an asymptotic value for heat transfer
near the location where the wall temperature changes. The
following mathematical formulations show that both slug
flow and no flow conditions approach the same values in
the vicinity of thermal entrances location. This implies that
near the thermal entrance location the velocity effect
becomes negligibly small.
2. Mathematical formulation

For study of heat transfer at very small x values, a non-
series solution is desirable. Alternatively, two limiting solu-
tions are sought: one assumes no flow condition as a lower
limit and the other assumes a slug flow as the upper limit.
The actual solution is expected to fall between these two
solutions. The subsequent formulation considers flow in a
semi-infinite region, shown in Fig. 1, whose solution pro-
vides these limiting cases. The steady state energy equation
assuming constant thermophysical properties, is
Flow 

T

ŷ

x̂
0ˆ =x

Ti

Tw

Fig. 1. Schematic of a semi-infinite region with temperature change at
x̂ ¼ 0.
k
o
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When the dimensionless temperature is defined as h =
(T � Ti)/(Tw � Ti), Eq. (1) takes the form

o
2h

ox2
þ o

2h
oy2
¼ Pe

oh
ox

ð2Þ
where x ¼ x̂=Lc, y ¼ ŷ=Lc, Pe = ULc/a, and U is the veloc-
ity. The parameter Lc is an arbitrarily selected quantity
equal to the width of the fluid layer W = 1 m in the ẑ direc-
tion perpendicular to x̂ŷ-plane as depicted in Fig. 1. It is
also possible to select Lc = a/U; however, in the prelimin-
ary formulation Lc = 1 m and this makes x ¼ x̂, y ¼ ŷ.
The boundary conditions for inclusion with Eq. (2) are

hðx;1Þ ¼ 0

hðx;0Þ ¼ 0; when x < 0 and hðx;0Þ ¼ 1; when x> 0

hð�1; yÞ ¼ finite

8><
>:

ð3Þ
Additionally, a special solution assuming no flow, when
Pe = 0, satisfies the following relation:

o2h
ox2
þ o2h

oy2
¼ 0 ð4Þ
subject to the same boundary conditions as given by Eq.
(3). The solution of Eq. (4) in a semi-infinite plane is ele-
mentary; it becomes a one-dimensional problem in cylin-
drical coordinates whose solution is

h ¼ 1� /
p

ð5aÞ
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where / is the angular coordinate. Since tan/ = y/x when
x > 0 and tan(p � /) = y/jxj when x < 0, Eq. (5a) takes the
form

h ¼
1� 1

p tan�1 y
x

� �
when x > 0

1
p tan�1 y

jxj

� �
when x < 0

8<
: ð5bÞ

Now, return to the solution of Eq. (2) which is the primary
emphasis of this paper. For convenience of the algebra, the
transformation

hðx; yÞ ¼ exxwðx; yÞ ð6Þ

reduces Eq. (2) to

o2w
ox2
þ o2w

oy2
� x2w ¼ 0 ð7Þ

where x = Pe/2. Solution of this equation is obtainable
using the standard separation of variables technique by let-
ting w = X(x)Y(y) to obtain

X 00

X
¼ � Y 00

Y
þ x2 ¼ �k2 ð8Þ

with k being a constant. Eq. (8) represents two ordinary
differential equations whose solutions are X = exp(±ikx)

and Y ¼ exp �y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ x2

p� �
. The application of an inte-

gral transform, in [17] and in [18, Section 17.21, P. 1183],
to the X(x)Y(y) product gives the value of w; that is

wðx; yÞ ¼
Z þ1

�1
AðkÞ expðikxÞ exp �y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ x2

p� �
dk ð9Þ

and then Eq. (6) provides the solution for Eq. (2),

hðx; yÞ ¼ exx

Z þ1

�1
AðkÞ expðikxÞ exp �y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ x2

p� �
dk

ð10Þ

The condition at the wall h(x, 0) = f(x) in conjunction with
Eq. (6) makes

AðkÞ ¼ 1

2p

Z þ1

�1
expð�xnÞf ðnÞ½ � expð�iknÞdn ð11Þ

When the function f(x) is defined as

f ðxÞ ¼
0 when x < 0

1 when x > 0

	
ð12Þ

Eq. (11) become

AðkÞ ¼ 1

2p

Z þ1

0

exp½�ðxþ ikÞn�dn ¼ 1

2p
1

xþ ik

� �
ð13Þ

Following the substitution for A(k), Eq. (10) takes the fol-
lowing form:

hðx; yÞ ¼ exx

2p

Z 0

�1

eikxe�y
ffiffiffiffiffiffiffiffiffiffi
k2þx2
p

xþ ik
dkþ

Z 1

0

eikxe�y
ffiffiffiffiffiffiffiffiffiffi
k2þx2
p

xþ ik

" #
dk

ð14Þ
This equation provides the solution for a positive x and for
a negative x. The solution presented by Eq. (14) has real
and imaginary components. This equation is reduced by
multiplying the numerators and the denominators by
x � ik, replacing exp(ikx) by cos(kx) + i sin(kx), retaining
the real parts, and following standard algebraic steps.
Then, the complex integrals within Eq. (14) yield the tem-
perature solution as

hðx; yÞ ¼ e�xjxj

p

Z þ1

0

xe�y
ffiffiffiffiffiffiffiffiffiffi
k2þx2
p

cosðk j x jÞ
k2 þ x2

dk




�
Z þ1

0

e�y
ffiffiffiffiffiffiffiffiffiffi
k2þx2
p k sinðk j x jÞ

k2 þ x2
dk

�
ð15aÞ

when x < 0 and

hðx; yÞ ¼ exx

p

Z þ1

0

xe�y
ffiffiffiffiffiffiffiffiffiffi
k2þx2
p

cosðkxÞ
k2 þ x2

dk




þ
Z þ1

0

e�y
ffiffiffiffiffiffiffiffiffiffi
k2þx2
p k sinðkxÞ

k2 þ x2
dk

�
ð15bÞ

when x > 0. For the purpose of verification, one can show
that Eqs. (15a) and (15b) when x = 0 reduce to

hðx; yÞ ¼ 1

p

Z 1

0

1

b2 þ 1
db�

Z 1

0

e�yk sinðk j x jÞ
k

dk


 �

¼ 1

2
� 1

p
tan�1 j x j

y

� �

¼
1� 1

p tan�1 y
x

� �
; x > 0

1
p tan�1 y

jxj

� �
; x < 0

8<
: ð16Þ

Eqs. (15a) and (15b) do not have good convergence
characteristics; therefore, alternative forms with better con-
vergence behaviors are sought. Examination of Eq. (3.961)
in [18] shows two possible useful relations to improve the
convergence, they areZ þ1

0

e�y
ffiffiffiffiffiffiffiffiffiffi
k2þx2
p k sinðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ x2
p dk ¼ xxffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p K1 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i
ð17aÞ

andZ þ1

0

e�y
ffiffiffiffiffiffiffiffiffiffi
k2þx2
p

cosðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ x2

p dk ¼ K0 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i
ð17bÞ

where K0 and K1 are the modified Bessel functions. Once
Eq. (15a) or Eq. (15b) is differentiated with respect to y,
the terms on the right side contain the integrals appearing
on the left side of Eqs. (17a) and (17b). After differentiation
of Eqs. (15a) and (15b) with respect to y and subsequent
substitutions using Eqs. (17a) and (17b), the results are

ohðx; yÞ
oy

¼ � e�xjxj

p

(
xK0 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i

� x j x jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ y2

p K1 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i)
ð18aÞ
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for x < 0 and

ohðx; yÞ
oy

¼ � exx

p

(
xK0 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i

þ xxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p K1 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i)
ð18bÞ

for x > 0. Next, the integration of Eqs. (18a) and (18b) over
y yields the final solutions

hðx; yÞ ¼ � e�xjxj

p

"
x
Z y

0

K0ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ g2

p
Þdg

�x j x j
Z y

0

K1ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ g2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ g2
p dg

#
ð19aÞ

when x < 0 and

hðx; yÞ ¼ 1� exx

p

"
x
Z y

0

K0ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ g2

p
Þdg

þxx
Z y

0

K1ðx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ g2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ g2
p dg

#
ð19bÞ

when x > 0. These are convenient solution forms since their
y-derivatives at the wall are

ohðx;yÞ
oy

����
y¼0

¼�xe�xjxj

p
K0ðx j x jÞ�K1ðx j x jÞ½ � when x< 0

ð20aÞ

and

ohðx; yÞ
oy

����
y¼0

¼ �xexx

p
K0ðxxÞ þ K1ðxxÞ½ � when x > 0

ð20bÞ

If the magnitude of x is sufficiently small, Eq. (9.6.13) in
[19] can be used to get an approximation for the K0(z)
Bessel function as

K0ðzÞ ffi �½lnðz=2Þ þ 0:5772�ð1þ z2=2Þ ð21aÞ

and, from Eq. (9.6.11) in [19], an approximation for the
K1(z) Bessel function is

K1ðzÞ ffi
1

z
þ z

2
lnðz=2Þ ð21bÞ

Eqs. (21a) and (21b) can produce the values for these Bessel
functions with four or more accurate significant figures
when z 6 0.025.
3. Determination of local wall heat flux

Using the heat flux definition, qw = �koT/oyjy=0, it is
observed that Eqs. (20a) and (20b) are related to the wall
heat flux. These quantities are used to determine expres-
sions for the wall heat flux and then to get the local heat
transfer coefficient h = qw/(Tw � Ti); then, the local Stan-
ton number, St = h/(qcpU), becomes

St ¼ qw

kðT w � T iÞ
a
U
¼ � 1

2x
ohðx; yÞ

oy

����
y¼0

ð22Þ

Following standard substitutions, using Eqs. (20a) and
(20b), the Stanton number is

St ¼ e�jPexj=2

2p
K0ðj Pex j =2Þ � K1ðj Pex j =2Þ½ � when x < 0

ð23aÞ

and

St ¼ ePex=2

2p
K0ðPex=2Þ þ K1ðPex=2Þ½ � when x > 0 ð23bÞ

where Pex ¼ Ux̂=a and j Pex j¼ U j x̂ j =a since x = U/a.

4. Total wall heat flux

The total heat flux is needed for the design of cooling
devices when the wall is heated discretely. The heat flux
leaving a differential element W � dx in the x̂ẑ-plane with
W = 1 m is dQ� 1 ¼ hðT w � T iÞ � 1� dx̂. Then, the heat
flux per unit length in z-direction is obtainable by integra-
tion of dQ over x̂,

Q1;2 ¼
Z x̂2

x̂1

hðT w � T iÞdx̂ ð24aÞ

In dimensionless space, when f = Pex/2, Eq. (24a) becomes

Q1;2

kðT w � T iÞ
¼ 2a

kU

Z f2

f1

hdf ¼ 2

Z f2

f1

St df ð24bÞ

This definition of total heat flow in conjunction with Eqs.
(23a) and (23b) yields the relations,

Q1;2

kðT w� T iÞ
¼ 1

p

Z f2

f1

e�jfj K0ðj f jÞ�K1ðj f jÞ½ �df when f< 0

ð25aÞ

or

Q1;2

kðT w � T iÞ
¼ 1

p

Z f2

f1

ef K0ðfÞ þ K1ðfÞ½ �df when f > 0

ð25bÞ

Since Q1,2 has the dimension of W/m, then, the quantity
Q1,2/[k(Tw � Ti)] represents the dimensionless total wall
heat flux between f1 and f2.

The next task is the determination of these integrals. The
analysis begins by using Eq. (11.3.15) in [19] (with m = 0) to
getZ f

0

e�fK0ðfÞdf ¼ fe�f½K0ðfÞ � K1ðfÞ� þ 1 ð26aÞ

Z f

0

efK0ðfÞdf ¼ fef½K0ðfÞ þ K1ðfÞ� � 1 ð26bÞ
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After differentiating the variables on the left side of follow-
ing equations

d½e�fK0ðfÞ� ¼ �e�fK0ðfÞdf� e�fK1ðfÞdf ð27aÞ

d½efK0ðfÞ� ¼ efK0ðfÞdf� efK1ðfÞdf ð27bÞ

and subsequent integrating of both sides, one gets other
needed integralsZ

e�fK1ðfÞdf ¼ �
Z

e�fK0ðfÞdf� e�fK0ðfÞ ð28aÞ
Z

efK1ðfÞdf ¼
Z

efK0ðfÞdf� efK0ðfÞ ð28bÞ

and then, using Eqs. (26a) and (26b), they becomeZ
e�fK1ðfÞdf ¼ �fe�f½K0ðfÞ � K1ðfÞ� � e�fK0ðfÞ ð29aÞ

Z
efK1ðfÞdf ¼ fef½K0ðfÞ þ K1ðfÞ� � efK0ðfÞ ð29bÞ

Now, the mathematical relations presented in Eqs.
(25a), (25b), (29a),(29b) are used for the determination of
Q* = Q/[k(Tw � Ti)] as related to the total wall heat flux.
Following appropriate substitutions, the indefinite inte-
grals for Q* are

Q� ¼ 1

p

Z
e�jfj K0ðj f jÞ � K1ðj f jÞ½ �df when f < 0 ð30aÞ

Q� ¼ 1

p

Z
ef K0ðfÞ þ K1ðfÞ½ �df when f > 0 ð30bÞ

and using Eqs. (26a), (26b), (29a), (29b) they become

Q� ¼ � 1

p
2 j f j e�jfj½K0ðj f jÞ � K1ðj f jÞ� þ e�jfjK0ðj f jÞ
 �

when f < 0 ð31aÞ

Q� ¼ 1

p
2fef½K0ðfÞ þ K1ðfÞ� � efK0ðfÞ
 �

when f > 0

ð31bÞ

The value of dimensionless wall heat flux within a region
between any two x values, e.g., between f1 and f2, is the dif-
ference between two corresponding Q* values designated as
Q�1;2. These functions have the unique numerical behaviors
discussed in the next section.
5. Results and discussion

An examination of Eqs. (19a) and (19b) shows that there
is a significant amount of energy transport by conduction
to the fluid before arrival to the heated region. This causes
the temperature of the fluid to rise before passing through
the x = 0 plane. The temperature when x = 0 is obtainable
from Eq. (19a) or Eq. (19b). The limiting value of the sec-
ond term within the square brackets in Eq. (19a), as x ? 0,
is p/2. Therefore, when x = 0, the integration of Eq. (19a)
or Eq. (19b) yields the function h(0, y) as

hð0; yÞ ¼ 1

2
� xy

2
K0ðxyÞL�1ðxyÞ þ K1ðxyÞL�0ðxyÞ½ � ð32aÞ

where L�1(xy) and L0(xy) are the modified Struve func-
tions defined by Eq. (12.2.1) in [18] as

LmðxyÞ ¼ xy
2

� �mþ1X1
m¼0

ðxy=2Þ2m

Cðmþ 3=2ÞCðmþ mþ 3=2Þ ð32bÞ

Fig. 2 represents the behavior of the function h(0,y) for dif-
ferent values of x. Note that, as x ? 0, the function h(0,y)
approaches the 1/2 as obtainable from Eq. (5a) when
/ = p/2. However, when x > 0, the function h(0,y) asymp-
totically approaches zero and more rapidly as x becomes
very large. This indicates that the effect of the axial conduc-
tion becomes small when x is much larger than those
appearing in Fig. 2.

Another interesting feature is observation of energy
gained by the fluid before arrival to x = 0 plane. By stan-
dard definition, the total grained energy E is

E ¼
Z 1

0

qcpU ½T ð0; yÞ � T i�W dŷ ð33aÞ

that can be written as

E=W
kfT w � T iÞ

¼ 2

Z 1

0

qcpULc

2k

� �
½T ð0; yÞ � T i�
fT w � T iÞ

d
ŷ
Lx

� �

¼ 2x
Z 1

0

hð0; yÞdy ð33bÞ

The integration of Eq. (15a) or Eq. (15b), when x = 0,
would provide the value of the integral in the above equa-
tion, that isZ 1

0

hð0; yÞdy ¼ x
p

Z þ1

y¼0

Z þ1

k¼0

e�y
ffiffiffiffiffiffiffiffiffiffi
k2þx2
p

k2 þ x2
dk

 !
dy

¼ 1

p

Z þ1

k¼0

Z þ1

y¼0

e�y
ffiffiffiffiffiffiffiffiffiffi
k2þx2
p

dy
� �

x

k2 þ x2
dk

¼ 1

p

Z þ1

k¼0

x

k2 þ x2
� �3=2

dk

¼ k

px
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ x2

p
�����
1

k¼0

¼ 1

px
ð34Þ

After substitution of this integral in Eq. (33b), the energy
gained by the fluid before its arrival to x = 0 plane is

E=W
kfT w � T iÞ

¼ 2

p
ð35Þ

which is a constant, independent of velocity. This is consis-
tent with the temperature data in Fig. 2 that show the local
temperature decreases as velocity or x increases.

The computed numerical data are acquired from Eqs.
(23a) and (23b) for the study of the Stanton number vari-
ations. The solid lines in Fig. 3 show the values of
St = h/(qcpU) from Eqs. (23a) and (23b) representing the
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Fig. 2. Dimensionless temperature h(0,y) at x = 0 for different x values.

Table 1
Selected values of St, Q*, and Nux for heat transfer in slug flow over an
infinite plate, when x < 0

�Pex/2 �St Q*, Eq. (30a) Nux �1/(pPex)

10 6.28 � 10�12 �5.87 � 10�12 1.25 � 10�10 0.015916
5 3.79 � 10�07 �3.35 � 10�07 3.78 � 10�06 0.031831
2 0.0006 �0.0004 0.00224 0.0796
1 0.0106 �0.0069 0.02118 0.1592
0.5 0.0707 �0.0371 0.07066 0.3183
0.2 0.3939 �0.1416 0.15758 0.7958
0.1 1.0695 �0.2712 0.21391 1.5916
0.05 2.5427 �0.4344 0.25427 3.1831
0.02 7.1647 �0.6837 0.28659 7.9578
0.01 15.009 �0.8875 0.30018 15.916
0.005 30.813 �1.0986 0.30812 31.831
0.002 78.412 �1.3838 0.31365 79.578
0.001 157.88 �1.602 0.31576 159.16
0.0005 316.92 �1.8213 0.31692 318.31
0.0002 794.24 �2.1121 0.3177 795.78
0.0001 1589.9 �2.3324 0.31798 1591.6
0.00005 3181.4 �2.5529 0.31814 3183.1
0.00002 7955.9 �2.8444 0.31823 7957.8
0.00001 15914 �3.065 0.31827 15916
0.000001 159153 �3.7979 0.31831 159155
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variation of St when x < 0 and when x > 0. According to
data in Table 1, the function St is negative when x < 0
while the graph describes the changes in its absolute values;
for this case, the St values rapidly approach zero. When
x > 0, the Stanton number has a higher value. The dash
line in Fig. 3 shows the limiting values of these data
obtained from Eq. (16), under the no flow condition. It is
remarkable that, at small x values, these two sets of data
from Eqs. (23a) and (23b) approach the dash line for
St = 1/(pPex) when jfj < 0.01. This limiting value for the
no flow condition implies that, at small x values, the data
for all velocities behave similarly. In other words, for suffi-
ciently small values of x, the heat transfer is dominated by
heat conduction; the flow velocity has negligible effect
there. A similar behavior is detectable by examination of
the Nusselt number. The Nusselt number Nux ¼ hx̂=k is a
product of the Stanton number and the Peclet number
and it is obtainable from the relation

Nux ¼ St � Pex ¼
h

qcpU
� Ux̂

a
¼ hx̂

k
ð36Þ

The data plotted in Fig. 4 show the values of the Nusselt
number Nux ¼ hx̂=k as a function of jfj = jPexj/2, for both
positive and negative values of f. Both sets of data asymp-
totically approach the value of 1/p, which is obtainable un-
der no flow condition. This observation is consistent with
other observations that, in the neighborhood of the ther-
mal entrance location, the heat transfer coefficient becomes
nearly independent of the velocity and it varies as 1/x,
when jPexj is between 0 and 0.01 for both positive and neg-
ative values of x.

One unique and a major issue is the functional behavior
of Q*. According to Eq. (31a), Q* ? 0 as f ? �1 and,
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Fig. 5. Total wall heat flux as a function of f ¼ Ux̂=ð2aÞ from Eqs. (30a)
and (30b).

Table 2
Selected values of St, Q*, and Nux for heat transfer in slug flow over an
infinite plate, when x > 0

Pex/2 St Q*, Eq. (30b) Nux 1/(pPex)

100 0.0399 15.938 7.9888 0.0016
50 0.0566 11.256 5.6559 0.0032
20 0.0898 7.0920 3.5903 0.0080
10 0.1277 4.9836 2.5541 0.0159
5 0.1827 3.4801 1.8272 0.0318
2 0.2984 2.1195 1.1937 0.0796
1 0.4425 1.4059 0.8851 0.1592
0.5 0.6772 0.8693 0.6772 0.3183
0.2 1.2691 0.3339 0.5077 0.7958
0.1 2.1601 0.0102 0.4320 1.5916
0.05 3.8523 �0.2717 0.3852 3.1831
0.02 8.7653 �0.6070 0.3506 7.9578
0.01 16.830 �0.8447 0.3366 15.916
0.005 32.854 �1.0750 0.3285 31.831
0.002 80.745 �1.3731 0.3230 79.578
0.001 160.43 �1.5962 0.3209 159.16
0.0005 319.70 �1.8182 0.3197 318.31
0.0002 797.31 �2.1107 0.3189 795.78
0.0001 1593.2 �2.3317 0.3186 1591.6
0.00005 3184.9 �2.5525 0.3185 3183.1
0.00002 7959.7 �2.8442 0.3184 7957.8
0.00001 15918 �3.0649 0.3184 15916
0.000001 159157 �3.7979 0.3183 159154
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therefore, Q* stands for Q�ðfÞ ¼ Q��1;f when f < 0. This
indicates that the Q* entries in Table 1 are the dimension-
less total wall heat flux between f = �1 and f < 0 and
Fig. 5 shows this trend when f < 0. Also, integration from
f = �1 to any x on the positive sides is possible. Such inte-
gration leads to the quantity Q* from Eq. (31b) for the
positive f values. It is noted that, as f ? 0 on the negative
side, the total wall heat flux becomes infinite. Furthermore,
the function Q* in Eq. (31b) goes to �1 as f ? 0 and it
goes to +1 as f ?1.

Fig. 6 shows the values of Q��1;f depicted as j Q��1;f j for
f < 0 and the values of Q�e;f ¼ Q�ðfÞ � Q�ðeÞ when e = 10�6

for f > 0, using the data in Table 2. Therefore, the function
Q�e;f represents the total dimensionless heat flux leaving the
plate between f = e and a f > 0 value. The selected value of
e = 10�6 is sufficiently small so that below which the con-
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Fig. 6. Total wall heat flux as a function of j f j¼ U j x̂ j =ð2aÞ when
e = 10�6.
tinuum state of materials may not be valid. Using this
lower limit for f = e, the corresponding x value is x̂ ¼
ð2a=UÞ � 10�6 m. For a typical liquid metal thermal diffu-
sivity with a = 10�5 m2/s, this distance is x̂ ¼ 0:02=U nm.
In general, the continuum condition is not valid for a range
of �e < f < e when e is of the order of molecular dimension.
As an illustration, typical atomic radii of materials vary
between 0.071 nm for Nitrogen atoms and 0.265 nm
for Cesium atoms, as given in [20]. For e = 10�6,
a = 10�5 m2/s, and a velocity of U = 2 cm/s, the corre-
sponding x̂ value is 1 nm, of the order of atomic dimension.
A similar situation emerges when a fluid flows through a
porous passage. As x̂ reduces and become of the order of
pore size, the local heat transfer coefficient cannot exceed
that within the pores. The value of interstitial heat transfer,
as given in Wakao and Kaguei [21], for stationary fluid in a
packed bed of spherical particles is hd/k = 2, where d is the
diameter of the spheres. Using pure conduction through
different-shaped pores, Minkowycz et al. [22] introduced
the values of hrh/k that change between 1.09 and 1.45,
where rh is the hydraulic radius of the pores as defined in
[22]. In general, it is possible to use the data in Tables 1
and 2 for the determination wall heat flux between any
two f1 and f2 values from the equation

Q�f1;f2
¼ Q�e;f2

� Q�e;f1
¼ Q�ðf2Þ � Q�ðf1Þ ð37Þ

if f1 and f1 are within a range that the assumption of con-
tinuum condition is valid. However, if the parameter f1 < 0
and f2 > 0, there would be a jump in the heat flux at f = 0
due to the mathematical formulation. It is noted that this
jump in the total wall heat flux appears within a range that
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the continuum condition does not apply. This leads to a
transition region to be followed by a non-continuum region
in which h has a nearly constant mean value, although it
locally varies due to molecular or other interactions. There-
fore, a properly selected e depends on the specific applica-
tion. Ignoring the transition region and assuming h ffi �h to
be a constant within the non-continuum region, Eq. (24a)
provides an estimation for the value of Q�0;e ¼ �hx̂=k for
x̂1 ¼ 0 and x̂2 ¼ x̂ ¼ 2ae=U . Since f = e is very small, Eq.
(24) yields �hx̂=k ffi hðfÞx̂=k ffi 1=p, as can be seen from
the data plotted in Fig. 4. This makes the total wall heat
flux within a region between f = 0 and f > e to become

Q�0;f ¼ Q�0;e þ Q�e;f ffi
1

p
þ Q�ðfÞ � Q�ðeÞ ð38Þ

and e ¼ Ux̂=ð2aÞ is located where the continuum condition
begins, within f P e region. Also, since e is very small, this
equation is valid when f < 0 although, by definition,
Q�0;f ¼ �Q�f;0.

6. Conclusion

It is shown that the heat transfer rate at sufficiently small
values of x is independent of the magnitude of the velocity,
represented as the Peclet number. Indeed, even the no flow
and slug flow conditions provide reasonable limiting values
near the thermal entrance location. Additionally, this lim-
iting concept is valuable for determination of wall heat flux
at the entrance regions of parallel plate ducts, circular
pipes, and those with two-dimensional cross sections such
as rectangular and triangular ducts. There are various pas-
sages in engineering applications within which the axial
conduction should not be ignored.

Furthermore, these limiting values show that the value
of total wall heat flux between 0 and a very small x = e
may not be deterministic. This is expected since the value
of wall heat flux at x = 0 is infinite due to the step change
in temperature. However, this is not a serious issue because
e can be set to have an extremely small value as the lower
limit for the continuum condition.
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